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A STUDY OF CONFINED DIFFUSION FLAMES

I. Introduction

The analytical work of Burke and Schumann (1) has formed many of

our fundamental ideas about laminar diffusion flames. In the original Burke-

Schumann problem, axisymmetric coflowing streams of fuel and oxidizer flow

through a confined duct, and the velocities, densities, and diffusion coeffi-

cients of the fuel and oxidizer are equal. Reaction is instantaneous, resulting

in a flame sheet of infinitesimal thickness in which the reaction rate is ef-

fectively controlled by the diffusion rate. The solution to this problem is an

equation which can be solved for the location of the flame front. In the orig-

inal analysis, Burke and Schumann chose the diffusion coefficients in order

to obtain good agreement with experiments. Later work (2) extended the

theory to describe the flame interface for unequal velocities and diffusion co-

efficients. Further extensions of the theory predict the behavior of multiple,

coupled diffusion flames (3,4).

Many of the restrictive assumptions in the Burke-Schumann analysis

can be removed by a numerical solution of the reactive flow equations. In

particular, there are a number of steady-state numerical solutions that sim-

ulate laminar diffusion flames. Gosman et al. (5) solved the two-dimensional

steady-state equations for a case in which all of the diffusion coefficients were

the same and the Lewis number was unity. Mitchell et al. (6) numerically

simulated steady-state flames with nonunity Lewis numbers but kept the

basic idea of the flame sheet model.

This paper describes a time-dependent, axisymmetric, compressible nu-

merical model which is designed specifically to simulate the nonsteady be-

havior of diffision flames. It contains submodels for finite-rate chemistry,

viscosity, thermal conduction, and the temperature dependence of material

properties such as specific heats and diffusion coefficients. As one of the
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first uses of the diffusion flame model, we simulate a Burke-Schumann flame

and remove the restrictious individually. We present results for a classic

Burke-Schumann flame with all of the restiictions included in the analy-

sis &nd compare to the anlytical solution. Then we include the following

sequentially:

1. Variable density and diffusion coefficients, radial convection, and axial

diffusion,

2. Heat release,

3. Viscous effects,

4. Gravitational effects.

This set of computations is a benchmark of the model that is currently being

applied to more complex transitional diffusion flames. Although practical

examples of Burke-Schumann flames are not as abundant as turbulent or

unsteady flames, they represent an important class of problems which can

be studied through theory, computation, and experiment.

Besides the applications of the model to the Burke-Schumann problem,

this paper also describes the numerical model in detail. Specific notable fea-

tures of the model are its time dependence, the finite-rate chemical model, the

temperature dependence of the transport coefficients, and the nonunity Lewis

number. The new elements of the numerical model that make such compu-

tations possible are the BIC-FCT algorithm used to compute the convection

and the parametric diffusion-reaction (PDR) model used for the finite-rate

chemistry. These features and algorithms are described in some detail in the

next section of this paper.

II. Numerical Methods and the Model Structure

The numerical model used for this study is based on those originally

developed by Patnaik et al. (7) to simulate low-speed premixed flames and

by Laskey (8) to simulate jet flames . The program solves the equations
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for conservation of mass density, momentum, energy, and individual species

number densities:

ap(1)

Opv

& + V.(pVV)=-VP-pG-V.- 
(2)

+ V-(Ev)=-V.Pv+V-(nVT)- V. Enkvkhk + Q (3)
k=1

-h + V-(nkv)=-V.( (kvk)+w , (4)

with the additional relations

Pk = nkkT, (5)
and

de = pc,, dT . (6)

The various quantites used in these equations and throughout this article are

defined in the accompanying Nomenclature.

Equations (1) - (4) contain terms representing convection, thermal con-

duction, species diffusion, chemical reactions, and viscosity. These equations

are then rewritten in terms of finite-difference approximations on an Eulerian

mesh and solved numerically for specified boundary and initial conditions.

The accuracy of the solution is determined by the specific finite-difference

algorithm, the spatial resolution set by the computational grid, and the tem-

poral resolution set by the timestep. There is a wide range of important

spatial and temporal scales in reacting flow problems. Because it is not usu-

ally possible to resolve phenomena on all of these scales, the smallest scales

must be modeled phenomenologically.

However, as computatioDal capabilities and model inputs improve, it

should be possible to replace certain submodels by more accurate or faster

submodels. For example, assuming that rate of diffusion is much less than

the reaction rate helps justify using a global reaction mechanism. Using

such a global reaction is, however, approximate and we believe that within a
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few years it will be possible to include a detailed set of elementary reaction

rates. Therefore, the computer program is designed in a modular form so that

particular submodels can be updated in a relatively straightforward way. In
the computer program, algorithms representing different physical processes

are solved separately and then the results are combined, as summarized

below. More detailed descriptions are presented by Laskey (8).

Convection

The solution to the convective terms in Eqs. (1) - (4) is obtained us-

ing the new algorithm, Barely Implicit Correction to Flux-Corrected Trans-

port (BIC-FCT) that was developed to solve the convection equations for
low-velocity flows (9). The Flux-Corrected Transport algorithm itself is an

explicit, finite-difference algorithm that is constructed to have fourth-order

phase accuracy (10). Through a two-step predictor-corrector algorithm, FCT
ensures that all conserved quantities remain monotone and positive. The

FCT procedure is to first modify the properties of a high-order algorithm

by adding diffusion during a convection step and then to subtract out the

diffusion in an antidiffusion phase. In addition, fluxes are limited to ensure

that no new unphysical maxima or minima are added during the convection

process.

However, because FCT is an explicit algorithm, the numerical timestep

required for accuracy and stability is limited by the velocity of sound accord-

ing to the Courant-Friedrichs-Lewy condition, At < min(Azx/c.). To avoid

this restriction, which would make computations of slowly evolving flows pro-

hibitively expensive, the convection equations are usually solved implicitly.
This filters out the sound waves from the equation and, therefore, removes

the sound-speed condition. Patnaik et al. (7) developed BIC-FCT so that

the timestep would be limited by the fluid velocity and not the sound speed.

This implementation has great advantages for computations of slow flows

because one BIC-FCT timestep costs the same as one regular FCT explicit

timestep, but the size of the timestep might be a factor of 50 to 100 times

greater.

4



BIC-FCT is based on the idea proposed by Casulli and Greenspan (11)

that only the terms containing the pressure in the momentum equation and

the velocity in the energy equation must be treated implicitly in order to

avoid the sound-speed limitation on the timestep. BIC-FCT has three steps.

In the first step, the conservation equations are solved explicitly with FCT

using a relatively large timestep governed by fluid velocity. In the second

step, the energy and momentum equations are rewritten in terms of a pres-

sure correction, 6p. These equations can be manipulated such that only one

elliptic equation for bp must be solved. In the third step, final values of
momenta and energy are obtained by adding the pressure correction terms.

Pajnaik et al. (7) have used this algorithm in a two-dimensional flame pro-

gram to investigate laminar instabilities in premixed flames.

The form used for the relation between the change in internal energy

and the change in the pressure, required in the second step of BIC-FCT,

can be derived from Eq. 6 and simpFfies under certain assumptions (8). For

example, if all of the constituents have the same temperature dependence,

we can write

de= bp+ (e P )d(lnn) (7)

where -y is a mixture quantity. The second term in Equation (7) is depen-

dent on the change in the local species concentration and is important only

in the reaction zone. In our simplified reaction submodel, we do not include

the intermediate species. Consequently, this term cannot be represented ac-

curately and we do not include it explicitly. In the reaction zone, we are

primarily interested in representing a finite flame thickness and reproducing

the correct maximum temperature. We calibrate the reaction submodel to

predict a realistic flame temperature and flame thickness without this term

included.

Molecular Diffusion

An algorithm for molecular diffusion has been formulated to estimate

the molecular diffusion fluxes without having to solve a full matrix problem.
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The change in species concentration for each species k due to molecular

diffusion is
onk = V -nk(8)

where the diffusion velocity, vk, is calculated from Fick's Law,

Vk = kVXk (9)

and then corrected by a procedure described by Kee et al. (12) to satisfy

the requirement that the sum of the diffusion fluxes is zero. This method is

algebraically equivalent to the first iteration of the DFLUX algorithm (13),

an iterative approach that solves for diffusion velocities to optional accuracy.

The change in total energy density due to molecular diffusion alone is

E n , h kV- ( 1 0 )

k=I

This energy term is calculated during the diffusion algorithm but is added

to the total energy at the end of the time step.

The explicit finite-differencing procedure applied to this term introduces

a numerical stability condition,

12/2 4 (11)

where Dk, is the diffusion coefficient for species k diffusing into a mixture.

To maintain stability, this condition may require a timestep smaller than that

required by the convection, which adds substantially to the cost of the calcu-

lation. To avoid this problem, the diffusion term is evaluated several times

during a convection timestep. This is especially important if the elevated

temperature of the reacting flow results in higher diffusion coefficients.

Binary diffusion coefficients are calculated from kinetic theory and are

in the following form

DkI =- '! T'- ' , (12)

n
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where AkI and BkL depend on species k and 1. Values for AkI and Bk have

been tabulated by Kailasanath et al. (14). The diffusion coefficient of species

k in a mixture of n., species is calculated according to

l-Yk
Dk 1 - k (13)

,bkml L1

hkh 1

where Yk is the mass fraction of species k, Xk is the mole fraction of species

k, and Dk,t is the diffusion coefficient of species k diffusing into species 1 (15).

Thermal Conduction

A two-dimensional model has also been formulated to simulate thermal

conduction. Restricting our attention only to the Fourier conduction term,

the energy equation appears as

E -V (cVT) (14)

As with the molecular diffusion algorithm, the use of explicit finite differenc-

ing introduces a stabilicy limit for the thermal conduction calculation,

PL~ ( X ) ":2) < 2 , ( 1 5 )
PCp 2+ Z2 2

where sc/pc, is the thermal diffusivity. The thermal conduction term is eval-

uated several times during each convection time step in the same manner as

the molecular diffusion term. Thermal conductivities, rq, for the individual

species were calculated from kinetic theory over the temperature range 300

K to 3300 K, and these values were fit to a third-order polynomial. The

mixture thermal conductivity is then calculated using the expression from

Kee et al. (12)

K~ [Xk- k+ na ] (1
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Viscous Stress

The momentum transport associated with viscous diffusion only is

opv-8-= -V (17)

where

r= 2 I-( (V.v)I-U [(VV)+(VV)T] (18)

and C is the second coefficient of viscosity and is assumed to equal zero.

Equation 17 is rewritten in terms f an explicit finite difference approxima-

tion which introduces a numerical stability condition,

-~ - - <-1. (19)p - + AY"2  2

The values for Mk were calculated from kinetic theory over the tempera-

ture range 300 K to 3000 K and fit to a third-order polynomial. The mixture

viscosity was calculated from

n, Xk 
(20)

j=1

where 4%j is a weighting factor

44i = 1 (1+ 7 ( + ( (21)

and Mk is the molecular weight of species k (16).

Model for Chemical Reactions

Ideally, we would like to simulate the chemical reaction by including

a detailed set of elementary reactions to describe the production of the in-

dividual species and the energy release in the flame. However, the cost of
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computer time and memory maks this prohibitive for problems in which

the flows are complex. We have, therefore, used the parametric diffusion-

reaction (PDR) model that reflects many of the major characteristics of a

more detailed calculation.

In the original flame-sheet model proposed by Burke and Schumann

(1), the fuel and oxidizer react completely and are not permitted to coexist.

Thus, the flame is an infinitesimal interface between regions of fuel and

oxidizer. In the PDR model d'veloped by Laskey (8), a single global reaction

mechanism, 2H 2 +02 --- 2120, is used but the fuel and oxidizer do not react

instantaneously. Instead, the reaction occurs over a finite time interval.

In a real flame, the increase in temperature in the reaction zone is a

result of the change in internal energy of the local mixture which includes

reactants, product, and intermediates. In our simulation, we do not include

the intermediates and, as a result, the specific heat of the gas is not repre-

sented accurately in the flame zone. Even if we obtain a realistic overall rate

for the global reaction, the temperature in the flame zone is too high unless

we compensate for the inaccuracy in the specific heat.

The two important physical characteristics of the flame zone are the

maximum temperature and thickness. We calibrated the reaction rate in a

one-dimensional transient diffusion flame such that a thin reaction zone de-

veloped and adjusted the heat of formation such that the maximum temper-

ture was approximately the adiabatic flame temperature for a stoichiometric

mixture of fuel and oxidizer.

Coupling

A complete solution to the governing equations requires solving the

terms for individual processes as well as accounting for the interaction among

the processes. In the calculations presented below, we use timestep splitting,

which assumes that the net effect of all the processes is the sum of the so-

lutions to individual processes. This technique is valid if the changes in the

dependent variables during a timestep are small. Table 1 is an outline that

shows the order of the computations during one timestep in the computer

code.
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Table 1. Outline of Diffusion Flame Code

Initialize Variables
* Increment time

1. Thermal Conduction
Integrate from t to t + At:
Calculate Ael
Do not update any variables
(Subcycle as necessary)

2. Ordinary Diffusion
Integrate from t to t + At:
Only update { ni(x)}
Calculate Ae 2
(Subcycle as necessary)

3. Viscosity
Integrate from t to t + At:
Only update pv
Calculate Ae3

4. Chemical Reactions
Integrate from t to t + At:
Only update {ni(z)}
Calculate Ae4

5. Convective Transport
Integrate from t to t + At:
z direction transport

Update p, pv, E, ni
y direction transport

Update p, pv, E, ni
Implicit correction- update p, e, and E

Start New Timestep (go to * above)

Due to different requirements of accuracy and stability, the type of cou-

pling used for lower velocity implicit calculations is different from that needed

for higher velocity explicit calculations. General information on these ap-

proaches is described in some detail in Reference (10), Chapter 13. In these

implicit computations, the changes in pressure or internal energy resulting

from the individual processes should not be added into the solution as soon

10



as they are computed, but instead should be accumulated over the timestep.

The entire change in internal energy is then included in the fluid convection

step. The specific coupling technique used in this program (17) allows larger

changes in variables per timestep while maintaining numerical stability.

III. Application of the Algorithm to a Confined Diffusion Flame

The numerical procedure described above was used to simulate several

confined diffusion flames. The geometry used in the calculations (Figure 1)

consists of a an inner jet of radius a and an outer annular region between the

jet and the walls at radius b. Typically, fuel flows through the inner jet and

oxidizer flows through the outer annular region. The appropriate boundary

conditions for this geometry are

1. r = 0 is a line of symmetry,

2. r = b is a solid, adiabatic, free-slip wall,

3. z = 0 is an inflow boundary where the concentrations, velocities, and

temperatures of the fuel, oxidizer, and inert are specified,

4. z = z, is an outflow boundary where the pressure is adjusted to equal 1

atmosphere.

For the Burke-Schumann flame, a = 1, b = 2, z, = 10 cm. The com-

putational domain consists of a 32 x 88 grid. The grid spacing is uniform

in the radial and the axial directions. Calculations on finer grids, such as

64 x 176, resulted in smoother flame interfaces but did not change the result

significantly. The computational time step is 1 ms.

For the simulations of a confined diffusion flame without all of the Burke-

Schumann restrictions, a = 0.5, b = 2.5, z1 = 10 cm. The grid consisted of

64 x 88 cells with fine cells concentrated around the jet exit. In the radial

direction, the grid spacing is approximately 0.02 cm from the centerline to

r = 0.7 cm and then expands gradually to a grid spacing of 0.12 at r = 2.5

cm. In the axial direction, the grid spacing is uniform through the domain

and equals 0.11 cm. A typical timestep is 10 Ms.

II



Computational Time Requirements

A two-dimensional simulation, which includes convection, chemical reac-

tion, molecular diffusion, viscous diffusion, and conduction, requires approx-

imately 25 /s per grid point per timestep on a Cray Y-MP. The convection

algorithm requires approximately twice the cpu time of either the molecular

diffusion or the viscous diffusion algorithms and four times that of the con-

duction algorithm. The parametric diffusion-reaction flame model requires

insignificant cpu time.

IV. The Burke-Schumann Flame

Burke and Schumann (1) found a solution for a set of equations that give

the location of the flame interface for a laminar diffusion flame under a certain

set of limiting conditions. The Burke-Schumann analysis of the laminar

diffusion flame and a comparison of their analysis to the computatuional

results are presented in this section.

In order to solve the equations, Burke and Schumann invoked a number

of simplifying assumptions:

1. The velocities of the fuel and oxidizer are equal and uniform everywhere,

2. The radial velocity is zero,

3. The densities and diffusion coefficients are equal for all components,

4. Radial diffusion is much greater than axial diffusion,

5. Reaction takes place at an infinitesimal flame sheet.

With these assumptions, the conservations equations can be reduced to a

single species equation which is solved with the following boundary condi-

tions:

1. r = b is a solid wall,

2. r = 0 is a line of symmetry,

3. At z = 0, the compositions of the fuel and oxidizer streams are specified.

The analytic solution to the equation yields the location of the flame surface

as a function of a/b and the initial concentrations of fuel and oxidizer.
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These assumptions enforce various unrealistic restrictions on the flow

field. If the velocity is uniform across the radius of the tube, then the no-

slip condition cannot be imposed at the wall boundary and, as a result, a

parabolic velocity profile typical of confined flows cannot develop. The as-

sumption of equal densities requires that one mole of fuel reacts with s moles

of oxidizer to form 1 + s moles of product. Finally, in a real flame, the vol-

umetric expansion associated with heat release distorts the one-dimensional

flow resulting in a radial component to the velocity and a nonuniform density

field. Consequently, the heat release and expansion are not considered in the

Burke-Schumann analysis.

Figure 1 shows two general cases that can be solved with the Burke-

Schumann approach: the underventilated flame, which has insufficient oxi-

dizer for complete burning, and the overventilated flame, which has excess

oxidizer. In the overventilated case, the fuel is completely consumed in the

reaction and the flame surface is closed at the centerline of the jet. In the

underventilated case, the flame surface bends outward and is attached to the

outer wall. The two different cases may be obtained by changing either the

ratio a/b or the composition of the fuel or oxidizer stream.

While the details of most flames cannot be represented realistically by

the results of the Burke-Schumann analysis, the predictions of the analysis

are surprisingly good for steady, laminar flames. In addition, it provides an

analytical result against which to test the numerical model.

Simulation of the Burke-Schumann Flame

For the first cases considered in this study, the ratio of the radii, a/b, is

0.5 (a = 1 cm, b = 2 cm), and the fuel flows in the inside jet and oxidizer flows

in the outside annular region. The velocities of the fuel and oxidizer streams

are uniform and equal to 10 cm/s. The densities of the two streams are equal

but the composition was varied by diluting the fuel or oxidizer stream with

an inert gas. All diffusion coefficients were equal to an equivalent mixture of

H 2 and N 2 diffusing into 02.
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Figure 2 shows a sequence of fuel and oxidizer concentration contours

for the numerical simulation of the Burke-Schumann flame as it evolves from

the initial condition to a steady state. At t = 0, pure fuel exists at r < 1

cm and an oxidizer mixture, consisting of one part oxidizer and one part

inert, exists at r > I cm. Since there is an overall excess of oxidizer, the

fuel and oxidizer interface moves inward during time steps 0 to 1000 because

the fuel is completely consumed in the reaction at the flame surface. In all

cases, fuel and oxidizer do not coexist because the Burke-Schumann flame

sheet model assumes that the reaction goes to completion. At time step 1000

which equals 1 second of physical time, the concentration field has reached

a steady state.

In Figure 3a, the computed contours for 1% of the inlet fuel concen-

tration and 1% of the inlet oxidizer concentration are superimposed on the

Burke-Schumann solution for the flame front. The analytic solution is the

interface between the fuel and oxidizer regions and should correspond to the

zeroth contour for either the fuel or the oxidizer, and it should occur between

the two 1% contours. Figure 3b shows a similar calculation for a fuel mix-

ture of one part fuel and three parts by volume of inert reacting with pure

oxidizer. In both cases, the computed flame front is within one cell of the

analytical solution.

A similar computation was conducted for an underventilated Burke-

Schumann flame. In this case, the inlet jet was pure fuel and the oxidizer

consisted of one part of oxidizer to four parts inert. The steady state fuel

contours are shown in Figure 3c with the analytic solution superimposed. In

this case, the flame bends outward and attaches to the outer wall. Again,

the flame shape and height are within the accuracy of the calculation.

V. Elimination of the Burke-Schumann Restrictions

The restrictions on the Burke-Schumann analysis prevent its application

to a wide range of problems. In this section, we describe how the computed

results are affected by eliminating some of the restrictions in the analysis.

14



In. these computations, the ratio of the inner to the outer radii is 0.2 (a

- 0.5, b = 2.5) and the inlet velocity is 30 cm/s. The fuel consists of 3.41

parts of H2 to 1 part N2 by volume and the oxidizer is air.

Introduction of correct stoichiometry, densities, and diffusion coeffi-

dents, but maintaining the conditions of uniform inlet velocity and isother-

mal reaction, required that radial gradients be included. The full system

of equations (1) - (4) were solved for this case and the results are shown

in Figure 4 after 0.4 s. Figures 4a and 4b show the axial and radial veloc-

ity contours and Figures 4c and 4d show the contours of fuel and oxidizer

mole fractions. Small radial velocities are induced in the reaction zone even

though heat release is not included. The maximum axial velocity of approx-

imately 35 cm/s occurs about 0.25-0.50 cm from the jet centerline. There

is a region of lower velocity within the fuel-rich zone close to the centerline

which initially consisted of pure fuel mixture. There is only a small region

very close to the inlet which is still pure fuel mixture because product has

diffused across the jet. This diffusion of heavier gases increases the density

in the fuel zone. Because momentum is conserved, the velocity decreases.

The flame interface lies between the lowest fuel and oxidizer contours. The

flame shape is slightly distorted due to the fluctuations in the radial velocity.

So far, heat release from the chemical reaction has not been included,

i.e. Q in Equation (3) is zero. The effects of including heat release are

shown in Figure 5 after approximately 0.3 seconds. The volumetric expansion

associated with the heat release accelerates the flow resulting in maximum

axial velocities of 120 cm/s. The hot gases are accelerated outward in the

radial direction with a maximum velocity of about 9 cm/s (Fig. 5d). The

radial velocity contours show that the flame is not steady but has vortices

which form at the fuel/oxidizer interface. This flame is shorter than that

predicted when heat release is not included in the calculation. The increased

radial velocity provides an additional mechanism for mixing so the reaction

zone is wider and the flame is shorter.
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When viscous effects are included in the calculation, the flow field

changes again and these results are shown in Figure 6. The gradients in

the axial velocity are reduced and the vortical structures are damped. The

concentration and temperature fields are similar to those without viscosity.

This flame is slightly longer than the flame without viscosity because the

radial mixing has been reduced.

In the final simulation, gravitational effects were included. This sim-

ulation includes all effects discussed in the equations (1) - (4). This case

was started from the flame in Figure 6 and the results after 0.25 seconds are

shown in Figure 7. The radial velocity field shows large structures which

form in the high temperature region near the jet. These structures convect

downstream and change the local concentration field. The H 2 concentration

field is not affected by gravity but the 02 concentration field has changed.

Gravity has a significant effect because there is a large density difference

between the burnt and unburnt gases in this flow.

Figure 8 shows a time sequence of 02 mole fraction contours. In the first

frame, a bulge appears approximately in the middle of the computational

domain and convects upward in frames 2 and 3. By frame 4, the 02 field is

very distorted as the structure convects upward. In the final two frames, the

structure continues to roll up as it convects out the computational domain.

We estimate the frequency to be 15-20 Hz. These structures are similar to

those observed experimentally in unconfined diffusion flames (20-21) and are

often attributed to the effect of buoyancy.

VI. Conclusions

The Burke-Schumann analysis has formed many of our ideas about lam-

inar diffusion flames. This simplified approach describes the global nature of

a confined laminar flame but ignores many of the physical phenomena in real

flames. In this paper, we described a new computer program which includes

these effects. The simulations show details of the flames which cannot be

observed from the analytical solution.
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Introducing variable density and diffusion coefficients for a H2 - N 2 fuel

jet with coflowing air results in small radial velocities. In a flame where

the inlet fuel and oxidizer velocities are equal, heat release accelerates the

gases and produces a mixing region characterized by large-scale instabilities

which are damped by viscosity. The effects of heat release and viscosity are

not included in the Burke-Schumann analysis but they appear to counter-act

each other.

Gravity produces a significant change in the flow field of a confined

diffusion flame. The flame fluctuates in time as the bouyancy-driven struc-

tures convect upward. These low frequency fluctuations obviously are not

represented in the steady state analysis of Burke and Schumann, but these

fluctuations do not change the flame location significantly.

Thus, as the Burke-Schumann restrictions are eliminated, the flame

characteristics change. Realistic stoichiometry, diffusion coefficients, and

densities for a H2 - N2 flame with coflowing air results in a laminar flame

with only small radial velocities. When heat release is included, vortices form

in the reaction zone but these structures are damped by viscosity. Finally,

gravity induces large-scale structures to form in the region outside of the

reaction zone.
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Nomenclature

Symbol Definition

', Speed of sound (cm/s)
c, Specific heat (erg/g-K)
Dik Binary diffusion coefficient between species i and k (cm 2 /s)
E Total energy density (erg/cm 3 )
G Gravitational acceleration constant (980.67 cm/s 2 )
h Enthalpy per molecule (erg/molecule)
I Unit tensor (nondimensional)
k Boltzmann constant (1.3805 x 10-16 erg/K)
n Number density (cm- 3 )
P Pressure (dyne/cm2 )
Q Energy release rate (erg/cm 3 _s1)

T Temperature (K)
V Velocity (cm/s)
w Production rate (cm- 3s - 1)
X Spatial coordinate (cm)
X Mole fraction
Y Spatial coordinate (cm)
Y Mass fraction

Greek

e Specific internal energy (erg/cm3 )
7 Ratio of specific heats, c./c,
K Thermal conductivity coefficient (erg/s-K-cm)
A Coefficient of shear viscosity (poise, g/cm-s)

p Mass density (g/cm3 )
T Viscous stress tensor (dynes/cm 2 )

Superscripts

T Transpose operation on a matrix

Subscripts

m Mixture of species
i,j, k, or I Individual species
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Fig. 2a - Contours of fuel concentration normalized by inlet fuel concentration for overventilated Burke-Schumann at times
(a) 0.0 (b) 0. 1 sec (c) 0.4 (e) 1.0 seconds
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Fig. 2b - Contours of oxidizer concentration normalized by inlet oxidizer concentration for overventilated Burke-Schumn
at times (a) 0.0 (b) 0. 1 sec (c) 0.4 sec (d) 0. 7 (e) 1.0 seconds
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Fig. 3 - Comparison of analytical and computed solutions for flame location for three different Burke-Schumann flames.
(a) Pure fue! reacting with I part oxidizer + 1 part inert. (b) One part fuel + 3 parts inert reacting with pure oxidizer. (c)
Pure fuel reacting with 1 part oxidizer + 4 parts inert.
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Fig. 4 - Contours of (a) radial velocity (b) axial velocity (c) mole fraction R2 (d) mole fraction 02 for H 2 - N2 diffusion
flame without heat release. Dimensions are in cm, velocities are in cm/s.
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H, - N, diffusion flame with heat release, viscosity, and gravity. Dimensions are in cm, velocities are in cm/s, tempera-
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